Copyright'2000,2001 The VDK team

VDK -VDKBuilder series 2
Tutorial

Version 1.1 March 2002

intentionally left blank page

Tutorial for VDK and VDK Builder series 2

Version 1.1
M ar ch 2002

By Mario Motta, VDK Team
mmotta@quest.net

Copyright © 2001 VDK Team
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, version 1.1 or any later version published by the Free Software Foundation.

intentionally left blank page

Introduction

System requirements

How to build VDK and VDKBuilder
Getting help and technical support

The VDK team

The skeleton project
— Getting started
— Skeleton project source files
— Skeleton project GUI source files
— Skeleton application first run
— How to nicely close skeleton application
— VDKBuilder project options
— Making skeleton form nicer
— Adding widgets to skeleton form
— Speaking about signals and events
— Go on with skeleton application

The menu project

— Menus and child forms

— About child forms
Using a fixed container
Widgets for drawing
How use unsopported widgets (placeholders)
VDK-Libsigc++ signal system extension
APPENDICES

A - Signals and events

B - About properties

C - Autoconf and Automake support to build GNU packages

D - NLS - How to make a Native Language Support application

using VDKBuilder

E - Vdkxdb library, using VDKBuilder with data—aware widgets

F - Vdksdl library, using VDKBuilder with SDL library

G - VDKInput tutorial by Jonathan Hudson

H - Going on Jonathan Hudson work

INDEX

page
page
page
page
page
page
page
page
page
page
page
page
page

page
page

page
page
page
page
page
page

page
page
page

page
page
page
page
page

10
13
17
20
21
23
25
27
31
33

51

55

63

65

71

77

91

99

103

105

109

127

135

145

Author’s note

This tutorial has the purpose of helping newbies to quickly learn how use VDK and VDKBuilder.*
However also more experienced users should find it useful since some advanced tecniques and
programming tips are covered. Topics follow a planned logic, the reader should follow this flow,
jumping from one topic to another can be somewhat confusing. The tutorial is divided in two parts,
the former shows how to use VDK and VDKBUilder, the latter contains several appendices where
some topics are discussed more indepth. We hope that you will find this tutorial useful, readers are
encouraged to send comments, suggestion and even complaints to Mario Motta mmotta@guest.net.
A final note: | apologize for my terrible english, mother-tongue readers please don’t be too
pretentious.

Thanks

Author thanks George Boutwell for his proofreading of this tutorial.

May be that some figures into this tutorial are slightly different since at the time of this writing
VDKBuilder work was in progress, this shouldn’t be a problem however, when necessary figures
have been updated.

This tutorial is a live document, i hope to make it better using users feedbacks.

1

Even if this tutorial was made for VDK/VDKBuilder series 2 it is largerly applicable to VDK/VDKBuilder 1.2.5 as well.

6

INTRODUCTION

VDK is a C++ binding of the famous GTK+ widget set libray, strictly speaking it is not just a
wrapper rather a framework that hides in the background as much GTK+ work as possible. VDK was
designed to be used by newbies with little or no knowledge of GTK+, while at the same time more
experienced users can take advantage of their knowledge of GTK+ calls and conventions. Using
VDK one will realize that there is not always a one—to—one relationship with GTK+, this is by
design, however it is alway possible to access and use underlying GTK+ objects. This hybrid nature
of VDK permits it to be useful to both newbies and more experienced users.

VDKBuilder is a RAD (Rapid Application Development) tool based on VDK that helps
programmers in constructing GUI interfaces, as well as editing, compiling, linking, and debugging
code all within an integrated environment. Using VDKBuilder dramatically reduces development
time since all code related to GUI construction and signal processing is automatically generated,
maintained and updated.

VDK is licensed under LGPL, VDKBuilder under GPL

VDKBuilder features

« Project Manager
Permits the creating of new projects or the opening of already existing ones. It takes care of the
editing, compilation and linking phases of the whole project, and automatically generates and
maintains updated GUI source files and the related makefile.

« Source Editor
A multi-file editor with C/C++ syntax coloring, search & replace, undo, jump to errors, word
completions, hints and more.

« GUI Designer
Permits construction of Graphical User Interfaces by simply "dragging" widgets onto forms while
VDKBuilder automatically generates all GUI related code for you.

* Widget Inspector
Allows editing of widgets’ properties using a very convenient field attributes interface

+ VDKBuilder Maker
Interacts with some external programs such as compiler, debugger and others tools simplifying
project compiles, links and debugging within VDKBuilder itself. External programs outputs are
handled by VDKBuilder Maker and used by VDKBuilder, for instance all warnings and errors from
the compiler are included into the source editor and features such as jump to error work seemlessly.

* Plugins
VDKBuilder can be extended by user developed plug—ins. These plug—ins are developed as shared
libraries and can be used to extend the supported widgets. VDKBuilder by default has plugins with
additional widgets including data—aware widgets based on xBase database library. (see
http://xdb.sourceforge.net)

+ Othersfeatures
A fully customizable environment, Automake/Autoconf support for generating GNU packages,
Emacs support (the ability to make Emacs the default source editor) and more..

SYSTEM REQUIREMENTS

To build and install VDK and VDKBuilder you need:

1. A Linux box, VDK/VDKBuilder have been tested on RedHat, Mandrake, Slackware
distributions but have been nicely built on many others? systems.

2. X libraries with include files, normally all modern Linux distributions install them by default

3. GTK+/Glib libraries, you need version 2.0 or later, be sure to have installed the development
version with include files and others tool.
GTK+ can be downloaded from: http://www.gtk.org

4. Optionally you can have also libsigc++ version 0.85 or later. Libsigc++ can be downloaded
from: http://libsigc.sourceforge.net/

5. Optionally (but recommended) doxygen installed, this nice tool allows you to build a
complete reference manual in html format with many hypertext links.
Doxygen can be downloaded from: http://www.doxygen.org/download.html

6. A c/c++ compiler, normally Linux boxes come with GNU gcc.

2 VDK/VDKBuilder are know to compile and run also in FreeBSD, Solaris, HPU-Irix, Mac-Linux Yellow Dog

7

HOW BUILD AND INSTALL VDK/VDKBUILDER

Here we discuss how to build and install from source code tarballs, rpm or rpm-like distributions
aren’t covered and not officially supported by VDKTeam.

1.

2.

Have VDK/VDKBuilder tarballs: vdk-2.0.0.tar.gz and vdkbuilder-2.0.0.tar.gz

They can be downloaded from http://vdkbuilder.sourceforge.net

VDK

Unpack:

$ tar xvzf vdk-2.0.0.tar.gz

| suggest you read INSTALL, NEWS and README files before proceeding, they can contain
last minutes changes and other useful information.

Build: *

$ cd vdk-2.0.0

% ./Eonfigure ——prefix=<your prefix> [others options]
make

Install: (you need root permission)
$ su

<enter password>

make install

exit

Test:

| suggest to take a look at vdk test program into vdk—2.0.0/testvdk directory:

$ cd testvdk

$ _/testvdk &

Testvdk program assures that all widgets work well, gives you a complete overview of VDK
features and lets you browse the source code as well. Furthermore it is a good source of
information how to use VDK widgets.

VDKBuilder

Unpack:

$ tar xvzf vdkbuilder-2.0.0.tar.gz

I suggest you read INSTALL, NEWS and README files before proceeding, they contain last
minutes changes and other useful information.

Build: ®

$ cd vdkbuilder-2.0.0

% ./Eonfigure ——prefix=<your prefix> [others options]
make

Install: (you need root permission)

$ su

<enter password>

make install

ldconfig -v | more

This assures that the plugin libraries will be correctly inserted in loader search path.

3

To see all configuration options try $./configure ——help

4 The default installation prefix is Zusr/1ocal, RedHat and RedHat like system users are encouraged to use Zusr instead.
Those users that are upgrading to VDK 2.0.x from VDK 1.2.x and want to maintain both versions must use a different prefix,
VDK 1.2.x and VDK 2.x are incompatible and should reside in different paths (I suggest Zusr for vdk 1.2.x and Zusr/local
for vdk 2.0). If you have installed libsigc++ library add ——enable-sigc=yes and ——enable-testsigc=yes to your
configure options. This will enable the vdk extended sygnal system. Also ——enable—static=no is reccommended, this
disables building of static libraries, linking vdk applications with static libraries is not well tested and you loose some LGPL
license advantages..If you link your application against static libraries you must distribute it under the same license, linking with
shared libraries instead permits you to distribute it under a less restrictive license.

The default installation prefix is Zusr/l1ocal, RedHat and RedHat like system users are encouraged to use Zusr instead.
Those users that are upgrading to VDKBuilder 2.0.x from VDKBuilder 1.2.x and want maintain both versions must use a
different prefix, VDKBuilder 1.2..x and VDKBuilder 2.x are incompatible and should exist in different paths (I suggest Zusr
for VDKBuilder 1.2.x and Zusr/local for VDKBuilder 2.0)

8

Test:

At this point you should be able to run:

$ vdkb2

At first run VDKBuilder will attemp to create a new directory: /home/your_account/.vdkb2/res
where it will put some files:

— cpphints

Is a file that contains source editor hints, you change this file using “Tools —>Hints editor” menu
— Iruprojects

This file contains last recently used projects that can be reopened using “File —>Reopen” menu

— tokens.db

This file contains keywords and syntax pattern information used by source editor syntax
highlighting.

— vdkbrc

This file contains some instructions regarding default fonts to be used and backgrounds for
tooltips. File format is more or less self explanatory, edit this file if you want to change them but
keep in mind that many gtk+ themes will override your settings.

— last.session

This file stores informations on the last session and is used to restore it on the next run. This
feauture is deactivated by default, use “Tools—>Set builder environment” menu to activate it.

— plugins.db

Is the plugins database, it contains informations about available plugins and where they can be
loaded from. Use “Components” menu to edit this file.

— vdkbide.defaults

Contains all VDKBuilder defaults, do not edit directly this file, use “Tools—>Set builder
environment” instead.

You will be given a dialog upon successful creation of the /home/your_account/.vdkb2/res files.

| suggest you then use VDKBuilder to open the project vdkbuilder—2.0.0/example/hello.prj, this
will demonstrate a very simple program made with VDKBuilder. Since project paths are hard
wired you will be prompted to update, answer yes to prompts and reopen the project again. To
open this project use “File—>Open—>Project” menu which opens the “Open project” dialog, and
browse through your directories to find vdkbuilder—2.0.0/example/hello/hello.prj project file,
select it and click on the “Open” button (or double click on selected file).

GETTING HELP AND TECHNICAL SUPPORT

If you plan to use VDK/VDKBuilder to develop or study I strongly suggest you subscribe to the
vdkbuilder-list, as you can then get the best response to requests for help.

Visit VDKBUilder site at http://vdkbuilder.sourceforge.net and follow mailing list link.

THE VDK TEAM

VDK Team is the pool of programmers that created and now maintain both VDK and VDKBuilder:

— Mario Motta <mmotta@guest.net> from Italy
The original author, he wrote initial versions of VDK and the VDKBuilder

— lonutz Borcoman from Romania
He is the first co—author of VDK, taking care of interface design and a lot of tests. His complains
and requests contributed to make VDK better and better. Actually isn’t an active member, we hope
soon he will join us again.

— Mile Lazarovski <daxml@freemail.com.mk> from Macedonia
Developer and mantainer, he wrotes a nice class browser for VDKBuilder.

— Tim Lorenz <tim@Iorenz.nu> from Germany
Developer and mantainer, he wrote VDK signal system extension for libsigc++ and the new VDK
properties system.

— PierreLouisMalatray <pierrelouis.malatray@free.fr> from France
Developer and mantainer, he wrote useful extensions to VDKString class.

— George Boutwell <gboutwel@yahoo.com> from USA
Developer and documentation writer

— Many other contributors devoted their work to VDK/VDKBuilder, we thank them all.

GETTING STARTED

The best way to learn a tool is to begin to use it, so let’s make the simplest program we can with VDK.
It will be just an an application with an empty form, nothing more, but is enough to demonstrate many

of VDK features.

The simplest, most bare bones, program that you create consists of an application and it’s associated
form (or window) called “application main form”, closing this form leads to program termination as
well. VDK accomplishes this with two abstract classes: VDKApplication and VDKForm; these are both
abstract classes, you cannot construct an instance of them, instead you have to subclass them for your
purposes. VDKApplication has a pure virtual method called Setup() that you must override in your
derived class which at some point must construct the main form, also VDKForm has a pure virtual
Setup() method that you must override as well. Both methods will be automatically called at program
start up, this is the place where you can make all necessary initializations and setup information, but

that will discussed more in depth later.

Now lets use VDKBuilder (thereafter called simply “builder”), it will do most of the work for you.

— Run vdkb2

— Click on “File=>New..—>Project” menu (or click on “New project” icon @on speed bar)

— A VDKBuilder new project wizard will appear:

YDEKBuilder project wizard

. % DK application

" Console application
-

() Griore compliant application

43 Previous siep D Mext step

as you can see you have three different choices:
— VDK application

A plain VDK application with at least a main form that does not contain anything desktop
specific (specifcally for KDE or Gnome) and should display on almost all window managers.

— Console application

An application made to be executed within an X terminal with the shell. This application does

not require VDK or a GUI Interface at all.

Step 1 - Project type

|& WDE typical applicatic
fwith at least a Main For

VDK Application

runs with most window ma

@ LCancel

— Gnome compliant application (has not been enabled at the time of this writing)

A VDK application that is Gnome aware and uses one or more Gnome widgets, it requires

Gnome libraries to be installed and typically requires the Gnome desktop, as well.

10

Since we want to make a plain VDK application, click on the “Next step” button. The next page of the
project wizard will require you to choose a project root path and a project name to construct a new
directory named: “project-root—path/project name”. Be sure not to put any extensions on the project
name, builder will add all needed extensions for you. By default the project wizard assumes "project—
root—path" is your “home” directory, you can change it using the “Browse” dotted button to the right of
the project root field. You can also insert author name, author email and check for a GPL license, all
this informations will be inserted into source headers. (You won’t see these informations into source
files on this tutorial however)

T WDKBuilder project wizard

EEE

Step2 - Project paths

Project root].l'mariu:u.l"u"DHEuiIderF'ru:-jeu:t.fdcucs.f‘tutcuriaj.f . Browse.
directory
Froject name |3ke|etu:un

{no extension

Absolute path]Imar:n:nND ks Buildder Projectidocsftutarialiskeletons

Author: |Mariu:| Motta

E-rnail: |mmu:utta@guest.net
[+ GFL'd source file headers

F;fu:uje-ct' ;:ﬂi'fe.ct'u':u'r_l.r:-:l'rh.ar-iu:;MEi'H'Builder.PrDje]:t..fdu:u-cs.;‘t'l.-lt-c.;

|Iain source: skeleton.colh

IMain GUI sources: skeleton_gui.ccih

{kain Form description: skeleton. frm

Project description: skeleton.prj

|Praject options: skeletan arj.opt
|Makefile: vdkhkakefile

K1) o]

43 Previous step % Text step I%H Finish @ LCancel

— browse to your project root directory

enter the project name “skeleton” in project name field
as you can see the project files tree is displayed in the lower panel:

Project directory: /mario/VDKBuUilder Project/docs/tutorial/skel eton

is the directory that will contains all project files

Main source: skeleton.cc/.h

These files are initially created by builder, any further changes you make to this file builder will
leave untouched.

Main gui sources: skeleton_gui.cc/.h

This file contains the code written by builder during interface design, any changes you make to
this file will be overwritten by builder each time you make a project build.

Main form description: skeleton.frm

This file is written by builder and describes how to make the main form interface, how many
widgets it contains, which signals are connected with what code and so on. Even if file format is
plain text, do not edit it or edit at your own risk, as builder maintains this file.

Project description: skeleton.prj

This file describes all the projects files and their type, do not touch it, builder maintains this file.
Project options. skeleton.prj.opt

It contains project only options. Do not edit it, this file is initially created by builder with default
values, use “Project->Options” menu to add or change what you need.

Makefile: vdkbMakefile

Is the makefile that builder creates each each time you do a project build, it is useless to edit it. It
can be used to do a make from the command-line.

6 e.g.$ make —f vdkbMakefile

11

— Now you can click on “Finish” button.
After you have been prompted to confirm the construction of the new directory (answer “yes”), you
can see that both Project manager and source editor are now showing the project files tree and the
main source: skeleton.cc.

— Project files tree is not complete, however, so use “File—>Save All” menu to save the whole project.
Now Project Manager will show the complete files tree (click “+” icon to expand nodes if necessary)
as you can see on the next picture.

Project manager

(=] (=] (x}

NewF Add Femove Edit Form atir.

eton pri
skeleton
|.-§] ImarioSDE Builder Project/docsftutorialiskele toniskeleton oo
[kl fmarion/DEEuilder Projectidocsitutorialiskeletonsskeletan b

\? ImarionSDE Builder Project/docsftutarialiskeletoniskeleton. frm

o

|.-ﬂ Mmario WD EBuilder Project/docsfutorialiskeletondzkeleton quice
[kl imarioA/D K Builder Projectidocs/tutarialiskeletonsskeleton quih

=

4 |

jskeletun.pri - Status: unsaved

Above you see all of the “skeleton” project’s files. Selecting a node and clicking on the “Edit” icon on
upper project manager bar will open the file for editing depending on what type of file itis. If it's a
source file, it will be opened in the source editor, or if the node is a form it will be opened in the GUI
designer. Double—clicking the node, will, also, open it ofr editing. Try to select skeleton.frm node and
click on icon, GUI designer will appear:

skeleton Main Form

before starting a discussion on the above source files, let’s instruct builder to save the current work
session so it can remember where you were next time you run builder:

— select “Tools—>Set builder environment” menu

— check “Saves last work session” check box, click on “Close and save” button.

12

SKELETON PROJECT SOURCE FILES

Now we will see what builder has created for you, lets go to the source editor, skeleton.cc should be
already there, now double click on skeleton.h node in the Project Manager, the file should appear in
source editor, let’s look step by step at the contents of both skeleton.h and skeleton.cc files.

Skeleton.h

/ *

skel eton Plain VDK Application

N;ai n unit header file: skeleton.h

*
/* include sentinel, assures that this file won’t be included twice
*/

#i f ndef _skeleton main formh_

#define _skeleton main formh_
/* this conditional compilation is related to Automake/Autoconf support,
and will be discussed later
*/

#i f def HAVE_CONFI G H

#i ncl ude <config. h>

#endi f

/* this file contains all VDK declaration, enums, types etc..
*/
#i ncl ude <vdk/vdk. h>
/ * Here builder has derived the application main form class, naming it with the project
name (capitalized) as prefix and “Form” as suffix.
*/
cl ass Skel etonForm public VDKForm

private:
/ * this method will be written/rewritten by builder each time you edit/change the form
with GUI designer, GUISetup() code is on skeleton_gui.cc file (will be discussed
later) and called by SkeletonForm::Setup().
*/

voi d GUl Set up(voi d);

publ i c:
/* since this is the application main form it is created passing a pointer to associated
application. In most cases a form is a child of another form, in such case it is created
by passing a pointer to the “owner” form, application main form can be considered as a
“special” child with its’owner set to NULL. In VDK there are two differents concepts:
ownership and parenthood, ownership is related to memory management, parenthood
instead refers to signals/events flow, in forms ownership and parenthood clash, in other
widgets the owner of a widget is always a form while its parent the container that
contains it. This topic will be discussed later together with signals/events flow.
*/

Skel et onFor n{ VDKAppl i cati on* app, char* title);
~Skel et onFor () ;

/* here builder has declared Setup(), making SkeletonForm a real class (recall that
VDKForm is an abstract class), this method will be invoked just before form creation
during application start-up.
*/

voi d Set up(void);
[* here skeleton_gui.h file will be included (this file is written and overwritten by
builder during GUI design)
*

/[* /

ui setup include
. 0 not patch bel ow here
#i ncl ude <skel et on_gui . h>

/* here builder declares a derived application class, using project name (capitalized) as prefix
and “App” as suffix.

13

*/
/] Skel eton APPLI CATI ON CLASS
cl ass Skel et onApp: public VDKApplication

{
publ i c:
/* Application constructor takes same arguments as main(), note the int* argc instead
int argc as in main()
*/
Skel et onApp(i nt* argc, char** argv);
~Skel et onApp() ;
/* here builder has declared Setup(), making SkeletonApp a real class (recall that
VDKApplication is an abstract class), this method will be invoked during application start-
up.
*?
YOid Set up(voi d);

#endi f

// do not renpve this mark: #!#
[/ end of file:skeleton.h

That’s all for skeleton.h, this file, initially created by builder will be left untouched after that and is for
you to modify as needed.

14

Now let’s switch to skeleton.cc using source editor page tabs.
skeleton.cc

/*

skel eton Plain VDK Application

Main unit inplenentation file:skeleton.cc
*/

#i ncl ude <skel et on. h>

/*

mai N program

*/

int main (int argc, char *argv[])

/* congtructs skeleton application
*/
Skel et onApp app(&argc, argv);
/* and runsit (note the & in argc for theint * in SkeletonApp.)
*/
app. Run();
/* that's all folks!
*/
return O;

/] Skeleton MAIN FORM CLASS
/* main form constructor. By default DisplayType is set to GTK_WINDOW_TOPLEVEL,
however it can be customized to GTK_WINDOW_POPUP that provides a form with no
decorations. An application’s main form should be a GTK_WINDOW_TOPLEVEL however.
*/
Skel et onFor m : Skel et onFor n(VDKAppl i cati on* app, char* title):
VDKFor m(app, title,v_box, D spl ayType)

%
/* main form destructor
*/
Skel et onFor m : ~Skel et onFor n()
%
/* main form setup, this method is called during application setup, here it calls
GUI Setup() written by builder, this should be the first call in Setup(), so leave it whereis
and add your code after.
*/
voi d
Skel et onFor m : Set up(voi d)
GUl Set up() ;
/1 put your code bel ow here
}

/] Skel eton APPLI CATI ON CLASS
/* application constructor

Skel et onApp: : Skel et onApp(int* argc, char** argv):
{ VDKAppl i cation(argc, ar gv)

}

15

/* application destructor
*/
?kgletonApp::~Ske|etonApp()

/* application setup, called at program start-up, creates, sets up and shows application main
form.
InitialPosition is set by default to GTK_WIN_POS_NONE, can be customized to be set under
mouse or centered on the screen.
*/

void

SkeletonApp: :Setup(void)

MainForm = new SkeletonForm(this,NULL);

MainForm->Setup();
MainForm—>Show(SkeletonForm: : InitialPosition);

}

// do not remove this mark: ##
// end of File:skeleton.cc

again skeleton.cc will be initially created by builder and left untouched for your coding.

16

SKELETON PROJECT GUI SOURCE FILES

There are two more source files, these are under builder responsibility: skeleton_gui.h and
skeleton_gui.cc, these files contain source code for constructing the application interface, they are
rewritten by builder each time you do a build and you have changed something in the GUI designer.
Those files are written getting informations from the file: skeleton.frm that describes the form and
it’s contents.

So the path is:

you change the gui design

builder updates skeleton.frm

when you do a project build builder reads skeleton.frm to rewrite skeleton_gui.h and
skeleton_gui.cc.

You may be asking why you can browse the contents of these files even if it’s useless to edit them?
The answer is: nothing should be hidden from you, even if it is redundant and useless, personally |
dislike those tools that hide thing in the background without notice to the user. If something goes
wrong you cannot see where and why, with builder you can see all that’s being done for you in an
easy and plain way. It may be inelegant but it works. Further more seeing these files is useful for
this this tutorial, and you can see them growing as you add useful widgets and signal handling to the
interface. So let’s take a step—by-step look at these files.

skeleton_gui.h

/*

/* recall that this file is included into skeleton.h, it contains all declarations for interface:
widgets, signals and signal response methods. Since we have constructed an empty form
you do not see any widget declaration here.

*/

skel eton gui header

*/

FEbI iC:

decl aring signal and events
dynam cs tabl es
*/

/* VDK has three different ways to handle signals and events emitted by widgets:

— using static signal/event tables, the easiest way, handled directly by builder, user only
needs to fill signal response method. Since we do not have widget, no signals/events to
handle, they are not shown in code here.

— using dynamic tables, handled by user who needs to then connect the widget with the
signal and response method, a bit more complicated but more flexible. Here you see
the declaration of signal/event dynamic table, user connects signal/events using
SignalConnect()/EventConnect() methods.

*/

DECLARE S| GNAL LI STgSkeI et onFor n ;

DECLARE_EVENT LI ST(

Iy
1/

kel et onForm ;

/-k

— There is a third way that VDK can use, the extended signal system and needs
libsigc++ library (recall that you must have built vdk with ——enable-sigc=yes option),
user then needs to connect the widget with signal and response method, more
complicated but, again, much more powerfull and allows the user to connect with all
signals/events.

— Furthermore it is possible, as demonstrated later on, to use native gtk+ signal system
using lower level gtk+ calls. In this case we loose a bit of flexibility since we are
forced to connect with global or class static callbacks, connecting directly with class
member functions is denied.

*/

declares two static used to initialize
formdisplay type and initial position

static G kW ndowType Skel et onForm : Di spl ayType;
static & kW ndowPositi on Skel etonForm :Initial Position;

Iy
1/

do not renpve this mark: #!'#
end of file:skeleton_gui.h

you can find a complete discussion about VDK signal system in tutorial appendices.

17

skeleton_gui.cc

#i ncl ude <skel et on. h>

[/ define static display type and initial form position

& kW ndowType Skel et onForm : Di spl ayType = GIK_W NDOW TOPLEVEL,;

& kW ndowPosi ti on Skel etonForm :Initial Position = GTK_W N_POS_NONE;
/* since in skeleton_gui.h dynamic table were declared, this is thelr definition
*

[* /

defining signal and events

gynan‘i cs tables
/* Note that the two macros that define dynamic tables require the name of the class and
his ancestor, this is a key point, signals/events will flow not only from widget through
their containers up to outermost widget but also along widget class hierarchy, this feature
makes VDK signal system “broadcast” signals/events in a way that allows them to be
answered at any level of the widget hierarchy. You can find a more detailed discussion on
signal/event flow strategy and how you can make the best of it in tutorial appendices.
*/

DEFI NE_SI GNAL_LI ST(Skel et onFor m VDKFor m ;

DEFI NE_EVENT _LI ST(Skel et onFor m VDKFor m) ;
/* this method is called by SkeletonForm::Setup(), here it prepares an empty form settmg
initial size (width and height respectively) and title. Obviously you can change them using
both GUI designer and Widget Inspector. Recall that this is the minimum size, form

cannot be shrunk below.
/*
mai n form set up
*/
voi d
Skel et onFor m : GUI Set up(voi d)

Set Si ze(400, 300) ;
Title = "skel eton Main Fornt;

}
/[l do not renove this mark: #!'#
/1 end of file:skeleton_gui.cc

Now take a look at skeleton.frm, the file that describes how a form is made and what it contains. Recall
that even if viewed in a textual form editing this file is not only useless but can be dangerous since the
parser is not well protected against syntax errors, so do not edit it unless you are an expert and at your
own risk :-)

skeleton.frm
E skel et on]

class:form

skel et on. t hi s: skel et on;

skel et on. Nor mal Backgr ound: ni hi |l ;
skel et on. For eground: ni hi | ;

skel eton. Font:"ni hil";

skel et on. Cursor:nihil;

skel et on. Backgr oundPi xrrap ni hil;
skel et on. FocusW dget :

skel et on. Di spl a?/Type O

skel eton. I'nitial Position: 0;

skel et on. Usi ze: 400, 300;

skel eton. Titl e: "skel eton Main For ' ;
skel et on. OnFor mActi vate: ni hil;
skel et on. OnChi | dd osi ng: ni hi | ;
skel et on. OnConfi gure: ni hil;
skel et on. OnExpose: ni hi |l ;

skel et on. Onl coni ze: ni hi |l ;

skel et on. OnMove: ni hi |l ;

skel et on. OnReal i ze: ni hi | ;

skel et on. OnResi ze: ni hi | ;

skel et on. OnRest ore: ni hi |l ;

skel et on. OnShow: ni hi | ;

skel et on. CanCl ose: ni hi | ;

18

}

the file contains a form’s description in terms of a list of properties and their values:

<property name>:<value>;

the list is enclosed into braces and has a label that uniquely identifies the form.

Since the form is actually empty no other information is written, skeleton.frm will grow as user adds
widgets and signal/event handling to the GUI interface. As you can see most of properties are set to
special value “nihil”, which means the user has not set any particular value. Depending on the property
nothing will be done or default value is used. For instance since the form’s normal background property
is set to nihil, the form will use default gtk+ theme background color. Same thing for form events, since
none are handled by user, all related properties are set to nihil. However, these notes are here only to
server as documentation, should there be the rare case that you have to directly patch this file and only
in case of builder failure (unlikely but not impossible :-))

19

SKELETON APPLICATION FIRST RUN
Now we are ready to make skeleton application, and then run it for the first time.

Use “Project—>Make” menu (or use €53 icon on source editor upper bar)

— Use “run",'{T icon located on main window lower speedbar or on source editor upper bar.
— Now close skeleton application using window manager “close” button on one of the window upper

Often it is necessary to do some clean—up before terminating an application or closing a form, as said
before closing the main form lead to application termination. How we can know when a form is being

VDKBuilder Maker will appear and

maker, builder has peformed a few tasks, however:

Again, builder maker will appear together with skeleton application, | agree it is an useless empty

builder has checked if one of the project files is changed, in such case will prompt you for saving

it’

if you have modified the interface builder reads skeleton.frm and rewrites skeleton_gui.h/.cc files

builder writes vdkbMakefile used by GNU “make” external program
builder calls GNU “make” program and show its outputs on builder maker panes.

builder maker will disappear as the compilation process finishes and the overall result is

prompted to you and reported on source editor messages pane.

YDEKBuilder Maker

B %

g+ - —g —Wall vk —config-2 —--cflags” -1 ~-DNOMNE -0 fmario’D K Builder Prajectfidocsitut
g+ —¢ —g —Wall ‘wdk-config-2 --cflags” -1 ~-DMNOME —o fmariofST K Builder Project/idocsitut

- [5](x]

starts builder’s maker, which is an interface with some
external programs such as GNU compiler. It is divided into two panes, while the upper one shows
what maker is doing (in this case you see the compiler outputs referring to compilation process), the
lower pane will eventually show (in red foreground) compilation errors if any. Before starting

Hopefully a message box should have prompted “VDKBuilder Maker terminated succesfully”,

this means that skeleton application has been built and ready to be runned.

form, but soon we will make it nicer.

corners (depends on windows manager you are using)
— Close also builder maker clicking on “kill” icon on upper toolbar.

closed in order to make necessary clean up and/or eventually prompt the user?
Let’s take a look at the next section which explains how.

7

This is the default behaviour, if you want save changed files without be prompted, use “Tools—>Set Builder Environment” menu

and check “Auto save modified files” checkbox, then click on “Close and save” button.

20

HOW TO NICELY CLOSE SKELETON APPLICATION

VDK handles window manager “window delete” event calling VDKForm::CanClose virtual method that
returns a boolean, a true value means “yes you can proceed to close the form”, a false value will
interrupt form closing procedure. Obviously at VDKForm class level this method return always true,
but if you override this method in SkeletonForm class you can control wheter the main form (and then
application) should be closed or not. Again builder can help you in this task

Select “skeleton.frm” node on project editor and click on “edit” icon

Widget inspector togheter with the gui designer will appear

Select Skeleton on widgets tree and click on “Form events” page tab

Select CanClose on form event list

Click on “Connects form to selected event” button

SkeletonForm —>VDEODRject: :skeleton

.J_

[=] (=]]

Properties F

Jumptolevent biardler] Connected |

OnFormactivate no
OnChild Clozing no
OnConfigqure [gla]
OnExposze no
Onleonize no
Onkove no
OnRealize no
OnFResize [gla]
OnFRestore no
OnsShow no

CanClose

Connects form to selected event

you will see that source editor move to the end of skeleton.cc, where builder has written for you a
SkeletonForm::CanClose method.

/I asks user before closing

bool

Skel et onFor m : CanC ose(voi d)

return true;

Leaving CanClose() method as is, is what makes main form and application close without further
notice. So let’s change CanClose() a bit in order to prompt the user for a closing confirmation.

21

bool
SkeletonForm: :CanClose(void)

int answer = Application ()—>MessageBox (
"'Skeleton application",
"Really close application ?",
MB_YESNO | MB_ICONQUESTION,
NULL,
NULL,
5000) ;

return answer == IDYES;

now CanClose() return a true value only if user answers “yes” to the Message dialog.

MessageBox() is declared as:
int VDKApplication::MessageBox (char * caption, char * text,

int mode = MB_OK,

char * oktext = (char*) NULL,
char * canceltext = (char*) NULL,
unsigned int wait = 0)

This method belongs to VDKApplication class and provides a modal dialog window for messages to
the user. Application object can be accessed from form using VDKForm::Application() method.
Parameters:

mode
MB_OK provide only one button with a "Ok" default caption
MB_YESNO provides two button with "Yes" and "No" default captions.
MB_OKCANCEL provides two button with "Ok" and "Cancel" default captions.
Mode can be ored with:
— MB_ICONSTORP provides a warning icon
— MB_ICONINFORMATION provides a “information icon"
— MB_ICONQUESTION provides a question mark icon
— MB_ICONERROR provides an error icon
MessageBox returns an integer that depends on modes and user response:
— IDOK, user pressed OK button in MB_OK or MB_OKCANCEL mode
— IDYES, user pressed YES button in MB_YESNO mode
— IDNO, user pressed NO button in MB_YESNO mode
— IDCANCEL, user pressed NO button in MB_OKCANCEL mode
oktex
canceltext
Args no longer used, mantained for compat with vdk series 1.2.x
wait
if set to anything other than 0, makes MessageBox automatically closed after <wait> msecs with
IDCANCEL or IDNO result.
MessageBox accepts CR as "yes/ok" and ESC as "no/cancel" default answers.

Now let’s build again the project, you will be prompted to save both skeleton.cc and skeleton.frm, that’s
normal since you changed the interface adding a form event handling, also skeleton.cc was changed by
adding CanClose() overridden method. Again builder maker will appear starting compilation process
that hopefully ends with success. Running the application and closing it a message box will appear

Skeleton application

@ Feally close application ¢
" |

close skeleton application and builder maker as well.
As an aditional exercise you could take a look at how skeleton_gui.h and skeleton.frm have been

changed by builder.

22

VDKBUILDER PROJECT OPTIONS

Before proceeding with our skeleton project let’s take a look at how we can change project options and
how they change the building process.
Use “Project—>Options” menu for this, a dialog form will appear:

Project options — </mario/VDKBuilderProject/docs tutorial/sk ~. 98 IE

C carpiler |g|:|:

C++ compgiler ig++

Liriker 1g++

Cormpilation flags |—g ="Wall “wodk —config -2 - -cflags”

Defines |—DNDNE

Include paths I—I..l'

Shared libs i’vdk -config-2 —-libs”

Debugger |

Program args]
* Autoconflaotormake
Fackage name J

Fackage wersian]III.III.I
[MLS Support

Close and save | Canicel J

The first three fields, that refer to compiler and linker to be used , are filled by default and in a Linux
box should be left as they are unless you do want to use another compiler different from GNU gcc (i
don’t see any reason for it).

Compilation flags

This fields, filled by default with —g —Wall, permits a compilation with debug information and a
satisfactory level of warnings, furthermore compiler will receives switches from the output of
vdk—config-2 script that tells to the compiler where to search all includes files that a vdk application
needs.

Just for exercise try to open an xterm and enter:
$ vdk-config-2 —--cflags
you should have something like this output:

—1/usr/local/include/vdk2 —1/usr/local/include/gtk-2.0
—1/usr/local/